LESSON 7-4

Practice B

Properties of Logarithms

Express as a single logarithm. Simplify, if possible.

1.
$$\log_3 9 + \log_3 27$$

2.
$$\log_2 8 + \log_2 16$$

3.
$$\log_{10} 80 + \log_{10} 125$$

4.
$$\log_6 8 + \log_6 27$$

5.
$$\log_3 6 + \log_3 13.5$$

6.
$$\log_4 32 + \log_4 128$$

Express as a single logarithm. Simplify, if possible.

7.
$$\log_2 80 - \log_2 10$$

9.
$$\log_4 384 - \log_4 6$$

12.
$$\log_6 180 - \log_6 5$$

Simplify, if possible.

14.
$$\log_5 5^{x-5}$$

Evaluate. Round to the nearest hundredth.

Solve.

22. The Richter magnitude of an earthquake, M, is related to the energy released in ergs, E, by the formula $M = \frac{2}{3} \log \left(\frac{E}{10^{11.8}} \right)$.

Find the energy released by an earthquake of magnitude 4.2.

LESSON 7-4

Practice C

Properties of Logarithms

Express as a single logarithm. Simplify, if possible.

1.
$$\log_6 12 + \log_6 18$$

4.
$$\log_6 18 + \log_6 72$$

7.
$$\log_5 5 + \log_5 125$$

Evaluate. Round to the nearest hundredth.

16.
$$\log_3 3^{(2x+1)}$$

17.
$$\log_4 16^{(x-1)}$$

20.
$$\log_5 \left(\frac{1}{125}\right)^2$$

21.
$$\log_{6} \left(\frac{1}{6^{4}}\right)^{3}$$

Solve.

- 25. Carmen has a painting presently valued at \$5000. An art dealer told her the painting would appreciate at a rate of 6% per year. In how many years will the painting be worth \$8,000?
 - a. Write a logarithmic expression.
 - b. Simplify your expression.