- AND STACE.

LESSON 9-9

Review for Mastery

The Quadratic Formula and the Discriminant

The Quadratic Formula can be used to solve any quadratic equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solve $2x^2 - 5x - 12 = 0$ using the quadratic formula.

$$2x^2 - 5x - 12 = 0$$

Step 1: Identify a, b, and c.

$$a = 2$$

$$b = -5$$

$$c = -12$$

Step 2: Substitute into the quadratic formula.

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(-12)}}{2(2)}$$

Step 3: Simplify.

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(-12)}}{2(2)}$$

$$x = \frac{5 \pm \sqrt{25 - (-96)}}{4}$$

$$x = \frac{5 \pm \sqrt{121}}{4}$$

$$x = \frac{5 \pm 11}{4}$$

Step 4: Write two equations and solve.

$$x = \frac{5+11}{4}$$
 or $x = \frac{5-11}{4}$

x = 4

$$x = -\frac{3}{2}$$

Solve using the quadratic equation by filling in the blanks below.

1.
$$x^2 + 2x - 35 = 0$$

$$x = \frac{-\left(\begin{array}{c} \\ \end{array}\right) \pm \sqrt{\left(\begin{array}{c} \\ \end{array}\right)^2 - 4\left(\begin{array}{c} \\ \end{array}\right)}}{2}$$

Simplify:

2.
$$3x^2 + 7x + 2 = 0$$

$$x = \frac{-\left(\begin{array}{c} \\ \end{array}\right) \pm \sqrt{\left(\begin{array}{c} \\ \end{array}\right)^2 - 4\left(\begin{array}{c} \\ \end{array}\right) \left(\begin{array}{c} \\ \end{array}\right)}}{2}$$

Simplify:

3.
$$x^2 + x - 20 = 0$$

$$x = \frac{-\left(\begin{array}{c} \\ \end{array}\right) \pm \sqrt{\left(\begin{array}{c} \\ \end{array}\right)^2 - 4\left(\begin{array}{c} \\ \end{array}\right)}\left(\begin{array}{c} \\ \end{array}\right)}$$

Simplify:

4.
$$2x^2 - 9x - 5 = 0$$

$$x = \frac{-\left(\begin{array}{c} \\ \end{array}\right) \pm \sqrt{\left(\begin{array}{c} \\ \end{array}\right)^2 - 4\left(\begin{array}{c} \\ \end{array}\right)} \left(\begin{array}{c} \\ \end{array}\right)}{2}$$

Simplify:

LESSON 9-9

Review for Mastery

The Quadratic Formula and the Discriminant continued

The discriminant of a quadratic equation is $b^2 - 4ac$. The discriminant will indicate the number of real solutions in a quadratic equation.

If $b^2 - 4ac > 0$	the equation has 2 real solutions.
$If b^2 - 4ac = 0$	the equation has 1 real solution.
If $b^2 - 4ac < 0$	the equation has 0 real solutions.

Find the number of real solutions of $4x^2 - 8x + 5 = 0$ using the discriminant.

$$4x^2 - 8x + 5 = 0$$

Step 1: Identify a, b, and c.

$$a = 4$$
, $b = -8$, $c = 5$

Step 2: Substitute into $b^2 - 4ac$.

$$(-8)^2 - 4(4)(5)$$

Step 3: Simplify.

$$64 - 80 = -16$$

 b^2 – 4ac is negative.

There are no real solutions.

Find the number of real solutions of $9x^2 - 49 = 0$ using the discriminant.

$$9x^2 - 49 = 0$$

Step 1: Identify a, b, and c.

$$a = 4$$
, $b = 0$, $c = -49$

Step 2: Substitute into $b^2 - 4ac$.

$$(0)^2 - 4(9)(-49)$$

Step 3: Simplify.

$$0 + 1764 = 1764$$

 b^2 – 4ac is positive.

There are two real solutions.

Find the number of real solutions of each equation using the discriminant by filling in the boxes below.

5.
$$4x^2 + 20x + 25 = 0$$

$$()^{2} - 4 () () ()$$

$$\frac{1}{x^2}$$
 6. $15x^2 + 8x + -1 = 0$

$$a =$$
 ; $b =$; $c =$

$$()^2 - 4 () ()$$

Find the number of real solutions of each equation using the discriminant.

7.
$$x^2 + 9x - 36 = 0$$

8.
$$25x^2 + 4 = 0$$

LESSON 9-9

Practice A

The Quadratic Formula and the Discriminant

Solve using the quadratic formula.

1.
$$x^2 + 6x + 5 = 0$$

$$x = \frac{- \left[\pm \sqrt{ \right]^2 - 4} \right]}{2}$$

2.
$$x^2 - 9x + 20 = 0$$

$$x = \frac{- \left[\pm \sqrt{ \right]^2 - 4} \right]}{2}$$

3.
$$2x^2 + 9x + 4 = 0$$

4.
$$x^2 - 3x - 18 = 0$$

Find the number of real solutions of each equation using the discriminant.

5.
$$x^2 + 3x + 5 = 0$$

6.
$$x^2 + 10x + 25 = 0$$

7.
$$x^2 - 6x - 7 = 0$$

$$b^2 - 4ac =$$

$$b^2 - 4ac =$$
 $b^2 - 4ac =$ $b^2 - 4ac =$ $b^2 - 4ac =$

$$b^2 - 4ac =$$

Solve using any method.

8.
$$x^2 - 64 = 0$$

9.
$$x^2 + 12x + 36 = 0$$

10.
$$x^2 + 4x - 32 = 0$$

11.
$$2x^2 + 9x - 5 = 0$$

LESSON Practice B

1 Tong to the Board

9-9 The Quadratic Formula and the Discriminant

Solve using the quadratic formula.

1.
$$x^2 + x = 12$$

2.
$$4x^2 - 17x - 15 = 0$$

3.
$$2x^2 - 5x = 3$$

4.
$$3x^2 + 14x - 5 = 0$$

Find the number of real solutions of each equation using the discriminant.

5.
$$x^2 + 25 = 0$$

6.
$$x^2 - 11x + 28 = 0$$

6.
$$x^2 - 11x + 28 = 0$$
 7. $x^2 + 8x + 16 = 0$

Solve using any method.

8.
$$x^2 + 8x + 15 = 0$$

9.
$$x^2 - 49 = 0$$

10.
$$6x^2 + x - 1 = 0$$

11.
$$x^2 + 8x - 20 = 0$$

12. In the past, professional baseball was played at the Astrodome in Houston, Texas. The Astrodome has a maximum height of 63.4 m. The height of a baseball t seconds after it is hit straight up in the air with a velocity of 45 ft/s is given by $h \neq -9.8t^2 + 45t + 1$. Will a baseball hit straight up with this velocity hit the roof of the Astrodome? Use the discriminant to explain your answer.